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In the century since the notion of the ‘engram’ was first

introduced to describe the physical manifestation of memory,

new technologies for identifying cellular activity have enabled

us to deepen our understanding of the possible physical

substrate of memory. A number of studies have shown that

memories are stored in a sparse population of neurons known

as a neural ensemble or engram cells. While earlier

investigations highlighted that the stability of neural ensembles

underlies a memory representation, recent studies have found

that neural ensembles are more dynamic and fluid than

previously understood. Additionally, a number of studies have

begun to dissect the cellular and molecular diversity of

functionally distinct subpopulations of cells contained within an

engram. We propose that ensemble fluidity and compositional

heterogeneity support memory flexibility and functional

diversity.
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In the early twentieth century, Richard Semon intro-

duced the term ‘engram’ to describe the physical mani-

festation of memory, defined as ‘the enduring though

primarily latent modification in the irritable substance

produced by a stimulus’ [1]. The biological basis for the

engram was elusive, however, as early investigators were

unable to find a specific engram within the cortex [2,3]. In

recent years, new technologies for identifying and con-

trolling cellular activity have enabled us to deepen our

understanding of the possible physical ‘trace’ of memory.

Several studies have shown that memories are stored in a
www.sciencedirect.com 
sparse population of neurons, defined as engram cells or a

neural ensemble [4–10]. While earlier studies highlighted

that the stability of a neural ensemble underlies a stable

memory representation, recent studies have suggested

that neural ensembles are more fluid than previously

thought [11–15]. Additionally, several groups have begun

to dissect the cellular and molecular diversity of function-

ally distinct subpopulations of cells contained within an

engram [16�,17�]. We propose that memory ensembles

comprise two additional properties that have only

recently been explored: ensemble fluidity that supports

memory flexibility and the compositional heterogeneity

of subensembles that contributes differentially to mem-

ory functions.

Prior studies leveraged immediate-early gene tagging

strategies as a way to identify which cells were activated

during a learning or memory recall session [18]. By taking

a ‘snapshot’ of which cells were activated during both

learning and memory recall, investigators sought to find

the engram—the physiological trace or storage site of the

memory. In a study in the hippocampus using fluorescent

in-situ hybridization measuring the expression of the

immediate-early gene Arc, investigators found that many

of the cells initially activated during encoding of

an environment were reactivated when the animals re-

entered the environment 20 min later [19]. Similarly,

another study found that amygdala cells initially activated

during tone fear conditioning (tone paired with a shock)

were likely to be reactivated when the animals heard the

tone a week later, recalling the fear memory [20,21�].
Furthermore, the behavioral memory of the tone paired

with the shock (assessed by the degree of freezing) was

positively correlated with the amount of reactivation of

the neural ensemble that was activated during initial

learning. These studies suggest that memories are stored

in neuronal ensembles and reactivation of those ensem-

bles contributes to memory retrieval and subsequently to

behavior.

If a memory is stored in a sparse neural ensemble, then

silencing these cells should impair the brain’s ability to

retrieve the memory. Conversely, artificially activating

these cells should induce the brain to retrieve the mem-

ory. To test the first hypothesis, an allocation strategy was

used to bias a tone-fear memory to be stored in a subset of

CREB+ cells in the amygdala. Later during recall when

the tone was played, investigators silenced the CREB+

neurons (by ablating or temporarily silencing those
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neurons), which inhibited the ability of the animal to

recall the tone-fear memory [21�,22�]. To test if artificially

reactivating the neural ensemble was sufficient to recall a

memory, an immediate-early gene tagging approach was

used to tag hippocampal neurons that were activated

during context conditioning (shock paired with a novel

context) [23�]. Animals were later placed in a different

and safe context, and when the neural ensemble tagged

from context conditioning was artificially activated with

an optogenetic strategy, the animals froze, suggesting that

they were recalling at least some aspect of the fear

memory. The memories stored in the ensembles were

context specific, such that artificially activating a tagged

ensemble of a neutral context (as a control) did not exhibit

an expression of fear. Similar findings have been reported

using a chemogenetic strategy [24]. Importantly, these

findings have been reported for multiple types of memory

[25–29] and across brain regions [9,30,31].

In addition to these studies, an extensive literature in

hippocampal physiology also supports the theory that

memories are stably encoded in neural ensembles. Using

in vivo electrophysiology, early studies found that hippo-

campal neurons (‘place cells’) fire according to the ani-

mal’s position in space [32–34]. Many studies have shown

that place cells reliably fire when animals return to the

same spatial location and this stability can be preserved

across weeks, making these cells suitable for long-term

storage of a cognitive map and possibly contributing

important spatial information to specific engrams

[34–37]. Critically, disruption of ensemble-specific reac-

tivation of place cells (replay) impairs spatial memory

[38]. Conversely, pairing intracranial stimulation with

place cell reactivation during sleep can reinforce specific

spatial memories and induce later awake spatially goal-

directed behavior in mice [39]. Together, these studies

strongly suggest that the memory engram exists in a

stable neural ensemble and that this ensemble is neces-

sary and sufficient for memory recall.

Memory engrams are flexibly updating with
new information
While a number of in vivo electrophysiology studies have

found hippocampal place cells to reliably fire again when

animals return to the same spatial location, most of these

studies compare place cell stability within one day

because reliably recording from the same cells across

multiple days has been challenging for electrophysiology.

One study successfully recorded the same place cells

across 2 days and found that place cells had more similar

firing patterns within 6 hours than within 30 hours when

the animal was exploring the same environment [40,41�].
Similar findings were reported using an in vivo imaging

method which can record from the same cells across

weeks [42�,43]. The probability that place cells would

fire again when the animal was exposed to the same

environment and was performing the same behavior
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decreased across weeks. Nevertheless, many of these

place cells retained stable spatial information when they

fired again days or weeks later. In other words, many place

cells continued to fire with high fidelity in the same

spatial location even though the probability of firing

decreased across time. This ability to decode stable

information in hippocampus despite changes in firing

rates over time is not limited to spatial information but

also extends to strategic information in rats trained on a

rule-switching task [44�]. This phenomenon is known as

representational ‘drift,’ where tuning is mostly stable

while individual cell activity rates change across minutes

to days. Representational drift has been reported across

the brain [12].

Interestingly, the drift observed from in vivo data in place

cell studies is consistent with immediate early gene

results. While it is difficult to make direct comparisons

across studies as the methods differ, it is worth noting that

experiments using in vivo recording techniques found

that when an animal returns to the same environment

within minutes to hours the ensemble activity correlation

of place cells is �90% but drops to �60% or lower across

days [40,42�,43]. This decrease in reactivation of the same

cells across time is generally consistent with observations

from immediate early gene studies. When an animal

returns to the same environment within 20 min, the

ensemble reactivation in hippocampal CA1 is �90%

[19] but decreases to 30–50% days later [25,27]. While

the exact reactivation rates differ across studies and

methods, there seems to be consistency in that the rela-

tive reactivation rates of neural ensembles decrease across

time.

This dynamic property of ensemble activity may provide

a mechanism that allows certain features of a neuronal

population to meaningfully track time while maintaining

accurate tuning properties. One study supporting this

theory showed time-dependent changes in spatial repre-

sentations in the hippocampus [43]. Spatial tuning curves

varied from day to day yet were sufficient to decode an

animal’s position along a linear track. Surprisingly, these

activity patterns were also sufficient to decode the session

in which the recording occurred. This finding led the

authors to conclude that the variance in population activ-

ity could contain information about relative temporal

distance between two similar encoding events [40,43].

Another possibility is that ensemble drift is not related to

tracking time, but that instead, the function of dynamic

ensembles might be to impose a strategy where neurons

‘take turns’ encoding new information to prevent too

many memories from being allocated to the same popu-

lation [Mau et al., in press]. Long time intervals between

encoding episodes, for example, can result in mostly non-

overlapping neuronal ensembles [45�,46�]. While the

temporal distance between the two episodes could
www.sciencedirect.com
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theoretically be distinguished with this pattern of mem-

ory allocation, it is equally likely that temporal distance is

not interpreted by a downstream reader these neurons

project to as implied by Rubin et al. [43]. Instead, time-

dependent variance in ensembles could merely reflect the

shift in priorities for which neurons receive incoming new

memories, and the function of neuronal drift would be to

distribute memories to neurons that were not recently

recruited. This process could be beneficial for memory

systems if plasticity is saturated in the population of

neurons that make up an engram, which could occlude

memory formation and memory-updating in these over-

worked populations [47]. To overcome this challenge,

drift may support the turnover of ensembles to facilitate

the availability of ‘new cells’ to encode new information

to integrate with the prior memory or to encode a new,

distinct memory altogether.

Endogenous changes and fluctuations in cellular activity

may contribute to drift and serve as a mechanism for

updating memories, linking those encoded close in time,

while separating memories encoded at more distant time

points [15,48], [Mau et al., in press]. One study focused on

the hippocampus showed that 5 hours after context learn-

ing, the ensemble that encoded the memory had

increased cellular excitability and this transient increase

in intrinsic excitability allocated a second distinct context

memory to be encoded by many of the same neurons as

the first context memory [45�]. However, days later when

excitability returned to basal levels, memory for a new

context was no longer preferentially allocated to the

neurons of the prior ensemble but was encoded instead

in an independent ensemble of neurons. Sharing a neural

ensemble between two memories functionally linked the

two such that recall of one memory triggered recall of the

temporally linked memory (encoded 5 hours apart, but

not 24 hours apart, Figure 1). Similar findings have been

observed in the lateral amygdala, where two different

cued fear conditioning sessions administered 6 hours

apart were more likely to be encoded by an overlapping

population of neurons than those encoded a day apart

[46�]. These memories were also shown to be behaviorally

linked: extinguishing one fear memory also extinguished

the other. While the studies described here focused on

how distinct memories can be linked during encoding,

other studies have demonstrated that transient increases

in intrinsic excitability in ensemble cells can also occur

during memory retrieval [49], priming the retrieved mem-

ory to be updated with new information [50].

Similar findings have been reported in human studies

investigating how memory representations are linked

across time. Functional imaging in humans revealed that

neural representations for object pairs heavily over-

lapped if spaced 30 min apart, but not 24 hours apart

[51]. Within the same temporal block of imaging, hip-

pocampal activity patterns are more similar than when
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separated by an intervening event, suggesting that epi-

sodes are segregated based on time [52]. Furthermore,

fear from aversive memories can transfer to neutral

memories if encoded close in time [53,54]. Taken

together, these findings across species, techniques,

and behaviors suggest that endogenous changes and

fluctuations in cellular excitability across time and expe-

rience can support the linking and updating of memories

(Figure 1).

Memory engrams are heterogeneous in their
composition
Earlier work on memory focused on engrams consisting

mostly of excitatory neurons. Recent evidence, however,

points to greater functional heterogeneity within ensem-

bles than previously thought. Heterogeneous population

activities have been observed during various types of

learning. Diversity in neural firing dynamics in the hip-

pocampus has been proposed to reflect the familiarity or

novelty of learned information. One study found that

familiarity was encoded by fast-firing, less-modifiable

neurons where novel features of an experience were

represented by a different set of slowly firing and highly

plastic cells [55]. Another study investigated how hippo-

campal ensembles differentially represent context and

space [56]. Similar to prior studies, Tanaka et al. found

that a subset of CA1 cells expressed c-Fos after an animal

experienced a novel context (A) and many of these cells

were reactivated when the animal returned to the same

context (A) but not when the animal explored another

novel context (B), demonstrating context specificity of a

neural ensemble. Interestingly, the cells that expressed c-

Fos and reactivated during memory recall when revisiting

context A did not fire in the same spatial location as during

the initial memory encoding of this context. Surprisingly,

between visits, the place fields of these cells had

‘remapped’ to a different spatial location within the same

context. Non-c-Fos cells also, surprisingly, showed more

stable spatial coding, as they were more likely to fire in

the same spatial location during the recall session in

context A. These data suggest that distinct hippocampal

ensembles may store spatial and contextual information.

Recent studies have also shown that subensembles con-

tain different components of a memory, which are then

orchestrated to constitute a memory [57–59]. In the

hippocampus, hierarchical structures can organize

relational information of multiple features of the envi-

ronment [60].

While identifying subensembles is gaining increasing

attention in the study of memory engrams, it is also

important to highlight that distinct ensembles can encode

the same information. For instance, multiple hippocam-

pal ensembles can encode the same spatial context [61].

Elucidating both the divergent roles of subensembles, as

well as the convergent roles of separate ensembles, will be

critically important to understand the full complexity of
Current Opinion in Neurobiology 2021, 67:199–206
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Figure 1
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Neural ensembles are temporally dynamic.

A population of neurons whose firing patterns are tied to the encoding of and/or retrieval of a specific event in time is thought to comprise a

memory trace, or engram. A sparse population of neurons that represent Event A are shaded in green and are distinct from the neurons that

represent a separate episode occurring days later, Event B, shaded in red. Separate memory episodes that occur close in time to one another are

more likely to share overlapping populations of neurons, as depicted in the cells shaded in blue corresponding to Event C occurring hours after

Event B. This phenomenon is known as temporal memory-linking.

Figure 2
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Neural ensembles consist of heterogenous subpopulations.

Neurons belonging to an ensemble that represents a specific memory

may be composed of distinct subpopulations of cells defined by

molecular composition, circuit-specificity, and/or functional output.

Different immediate-early genes (IEG, e.g. c-Fos, Npas4, Arc) that are

commonly used to tag neurons tied to a specific event in an activity-

dependent manner can label separate subpopulations of neurons that,

for example, receive distinct inputs and are important for

fundamentally different behaviors, shaded in magenta and blue,

respectively.
engrams. Very few studies have dissected how function-

ally distinct neuronal ensembles can be distinguished

within an engram at the molecular and cellular levels.

Genetically encoded activity reporters based on immedi-

ate early genes, such as c-Fos and Arc, commonly consid-

ered proxies for neuronal activity, have been used to

identify neuronal ensembles in engrams. Until very

recently, most studies have focused on ensembles defined

by a single activity-dependent pathway [18]. However,

activity-dependent pathways are known to be highly

diverse: they respond differently to external stimuli

and mediate distinct cellular and synaptic processes

[62,63]. For instance, it is known that Arc proteins have

virus-like capsid capabilities that can influence synaptic

communication between neurons and underestimating

this feature of Arc expressing neurons may miss critical

network architecture features of how ensemble microcir-

cuitry forms and is maintained [63,64]. Additionally, a

recent study dissected two molecularly and functionally

distinct ensembles within the dentate gyrus of the hip-

pocampus underlying a contextual fear memory engram.

Neurons that expressed c-Fos at learning, which mediates

long-term potentiation of excitatory synapses, supported

memory generalization, while neurons that expressed

Npas4 at learning, which preferentially recruits inhibitory

synapses onto excitatory neurons, regulated memory dis-

crimination [17�] (Figure 2). The two molecularly distinct

ensembles were both reactivated during recall, playing

subtle but important roles in balancing memory generali-

zation versus discrimination. These types of approaches

to identifying how molecularly distinct cellular profiles

can be linked to different physiological and behavioral

functions have been appreciated in other areas of

research. Bringing such molecular insights to the engram

field, particularly as newer technologies combining
Current Opinion in Neurobiology 2021, 67:199–206 
imaging and transcriptomics tools emerge, will advance

systems neuroscience at a more interdisciplinary level

[65].

Most studies on memory engrams have focused on the

storage of memories in a neural ensemble consisting of

excitatory neurons hypothesized to store stimulus asso-

ciations through persistent changes in excitatory synapse
www.sciencedirect.com
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strength and density [4,58,66]. In contrast, GABAergic

interneurons are generally thought to inhibit excitatory

neurons, and have been suggested to constrain ensemble

size and to modulate memory strength and the specificity

of learning [46�,67–70]. While several studies show that

interneurons play an important supporting role in mem-

ory storage, recent evidence demonstrates that interneur-

ons can also have a direct role in storing memories through

their own functional plasticity. One study has shown that

a subset of prefrontal somatostatin (SST) interneurons

was activated during initial learning of tone-shock pair-

ing and this ensemble of SST cells also exhibited

enhanced plasticity (as shown by enhanced synaptic

transmission) [16�]. Inactivating this specific SST

ensemble reduced memory recall, while activating the

SST ensemble elicited memory recall. This phenome-

non was specific to SST neurons and was not seen in

other interneurons (e.g. parvalbumin interneurons).

Emerging evidence suggests that a memory engram

contains different cell types and signaling pathways to

engage different synaptic and circuit mechanisms to

modulate memory-guided behaviors [71].

Conclusion and future directions
With the advent of more advanced experimental tools,

the cellular and molecular properties of engrams can

today be characterized in unprecedented ways [72–74].

We are discovering that engrams are more dynamic and

fluid in their population codes than previously under-

stood. Rather than mere noise in the system, these

dynamic properties may support complex computational

capacities that might be useful for updating and inte-

grating new information with existing memories across

time. Furthermore, it is becoming increasingly clear that

the cellular makeup of an engram’s constituent neurons

is more heterogenous than it appears, contributing to

more complex microcircuitry that needs further charac-

terization. Developing newer analysis methods of neural

activity using unsupervised approaches can help us

identify clusters of neural activity by how they are

internally related in the brain rather than by experi-

menter-imposed behavioral labels [75]. Such knowl-

edge, when combined with other approaches, may

reveal unexpected functional roles of population activ-

ity as well as the how different ensembles or suben-

sembles of cells may contribute to a function. In addi-

tion to analysis tools, developing more sensitive

approaches with increased spatial and temporal resolu-

tion when recording, tagging and controlling neural

activity, including newer advancements in optogenetics,

chemogenetics, multi-channel calcium imaging, activ-

ity-dependent engineering strategies, and holography

technologies will allow for a more refined understanding

of the importance of spatiotemporal dynamics in mem-

ory processing [76–81]. Development of more sensitive

behavioral readouts of memory representations will also

help to further engram research. Much of the engram
www.sciencedirect.com 
literature to date has concentrated on fear conditioning

related behaviors, which, while useful for their simplic-

ity, are limited by simple behavioral readouts. Increas-

ing the complexity of the behavioral tasks, as well as the

ability to extract more subtle behaviors from existing

paradigms to probe the functional diversity of memory

representations will be needed to advance the engram

field [82]. Improving our knowledge of the complexity

of the temporal and cellular properties of memory

engrams will enable to us to better understand the

multifaceted nature of memory representations and

how they contribute to behavioral outcomes.
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